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Agents for Information Gathering 

Craig A. Knoblock and Jose Luis Ambite 
Information Sciences Institute and Department of Computer Science 

University of Southern California 

Abstract 

With the vast number of information resources available today, a critical problem is how to 
locate, retrieve and process information. It is impractical to build a single unified system that 
combines all of these information resources. A more modular approach is to build specialized 
information agents where each agent provides access to a subset of these resources and can serve 
as an information source to other agents. In this paper we present the architecture of the indi- 
vidual information agents and describe how this architecture supports a network of cooperating 
information agents. We describe how these information agents represent their knowledge, com- 
municate with other agents, dynamically construct information retrieval plans, and learn about 
other agents to improve their accuracy and efficiency. We have already built a small network of 
agents that have these capabilities and provide access to information for logistics planning. 

1.1    Introduction 

With the growing number of information sources available, the problem of how to com- 
bine distributed, heterogeneous information sources becomes more and more critical. The 
available information sources include traditional databases, flat files, knowledge bases, 
programs, etc. Traditional approaches to building distributed or federated systems do 
not scale well to the large, diverse, and growing number of information sources. Re- 
cent Internet systems such as World Wide Web browsers allow users to search through 
large numbers of information sources, but provide very limited capabilities for locating, 
combining, processing, and organizing information. 

A promising approach to this problem is to provide access to the large number of 
information sources by organizing them into a network of information agents [Papazoglou 
et al., 1992]. The goal of each agent is to provide information and expertise on a specific 
topic by drawing on relevant information from other information agents. To build such 
a network, we need an architecture for a single agent that can be instantiated to provide 
multiple agents. We will base our design on our previous work on SIMS [Arens et al., 1993, 
Knoblock et al., 1994, Arens et al., 1995], an information mediator that provides access 
to heterogeneous data and knowledge bases. 

This chapter focuses on the design of an individual (SIMS) agent and discusses the 
issues that arise in using this design to build a network of information gathering agents. 
In Section 1.2, we present an approach to organizing a group of information agents. 
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Then, in Sections 1.3 to 1.6, we present the design of the individual agents. Section 1.3 
describes how the knowledge of an agent is represented as a set of interrelated mod- 
els. Section 1.4 describes how the agents exchange queries and data with one another. 
Section 1.5 describes how information requests are flexibly and efficiently processed. Sec- 
tion 1.6 describes how an agent learns about the other agents in order to improve its 
accuracy and performance over time. Section 1.7 describes closely related work in this 
area. Section 1.8 concludes with a discussion of the current status and the work that 

remains to be done. 

1.2    Agent Organization 

In order to effectively use the many heterogeneous information sources available in large 
computer networks, such as the Internet, we need some form of organization. The concept 
of an agent that provides expertise on a specific topic, by drawing on relevant informa- 
tion from a variety of sources, offers the basic building block. We believe that agents 
will be developed to serve the information needs of users in particular domains. More 
complex agents that deal with wider and/or deeper areas of knowledge will appear in an 
evolutionary fashion, driven by the market forces of applications that can benefit from 

using them. 
Similar to the way current information sources are independently constructed, infor- 

mation agents can be developed and maintained separately. They will draw on other 
information agents and data repositories to provide a new information source that oth- 
ers can build upon in turn. Each information agent is another information source, but 
provides an abstraction of the many information sources available. An existing database 
or program can be turned into a simple information agent by building the appropriate 
interface code, called a wrapper, that will allow it to conform to the conventions of the 
organization. Note that only one such wrapper would need to be built for any given 
type of information source (e.g., relational database, object-oriented database, flat file, 
etc). The advantage of this approach is that it greatly simplifies the individual agents 
since they only need to handle one underlying language. This makes it possible scale the 
network into many agents with access to many different types of information sources. 

Some agents will answer queries addressed to them, but will not actively originate 
requests for information to others; we will refer to these as data repositories. Usually, 
these agents will correspond to databases, which are systems specially designed to store 
a large amount of information but in which the expressive power of their data descrip- 
tion languages and their reasoning abilities have been traded off for efficiency. In the 
rest of the chapter, we will use the term data repository when we want to emphasize 
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such behaviour, otherwise we will use the terms information agent or information source 
(interchangeably). 

Figure 1.1 shows an example network of information agents that will be used through- 
out the chapter to explain different parts of the system. The application domain of 
interest is Logistics Planning. In order to perform its task, this agent needs to obtain in- 
formation on different topics, such as transportation capabilities, weather conditions and 
geographic data. The other agents also integrate a number of sources of information that 
are relevant to their domain of expertise. For example, the Sea_Agent combines assets 
data from the Naval_Agent (such as ships from different fleets), harbor data from the 
Harbor_Agent and the Port .Agent (such as storage space or cranes in harbors, channels, 
etc, information that has been obtained, in turn, from repositories of different geograph- 
ical areas). These four agents (circled by the dotted line in the figure) will be examined 
in greater detail in the following sections. 

There are several points to note about this network that relate to the autonomy of 
the agents. First, each agent may choose to integrate only those parts of the ontologies 
of its information sources necessary for the task that it is designed for. For example, 
the Transportation-Agent might have a fairly complete integration of the Sea, Land 
and Air agents, while the LogisticsJPlanning_Agent might only draw on some parts 
of the knowledge of the Weather and Geographic agents. Second, we may need to 
build new agents if we cannot find an existing one that contains all the information 
needed. For example, if the Geographic Jig ent did not include some particular geopo- 
litical facts required by the Logistics_Planning_Agent, the latter could access directly 
the Geopolitical-Inf ormation-Agent. However, if much of the information was not 
represented, an alternative geographic agent would need to be constructed (and linked). 
Third, the network forms a directed acyclic graph, not a tree, because a particular agent 
may provide information to several others that focus on different aspects of its expertise 
(like the Port_Agent, that is accessed by the Geopolitical, Air and Sea agents). 
Nevertheless, cycles should be avoided, otherwise a query may loop endlessly without 
finding some agent that can actually answer it. In summary, in spite of the complexity 
introduced by respecting the autonomy of the agents in the organization, the fact that 
individual agents can be independently built and maintained makes the system flexible 
enough to scale to large numbers of information sources and adaptable to the needs of 
new applications. 

In order to build a network of specialized information agents, we need an architecture 
for a single agent that can be instantiated to provide multiple agents. In previous work 
we developed an information server, called SIMS, which provides access to heterogeneous 
data and knowledge bases [Arens et al, 1993]. We use the Loom Interface Manager (LIM) 
[Pastor et al, 1992] as a wrapper for relational databases. Using SIMS and LIM, we built 
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Figure 1.1 
Network of Information Gathering Agents 

a small network of information gathering agents that interact over the Internet. Each 
SIMS agent contains a detailed model of its domain of expertise and models of the infor- 
mation sources that are available to it. Given an information request, an agent selects an 
appropriate set of information sources, generates a plan to retrieve and process the data, 
uses knowledge about the information sources to reformulate the plan for efficiency, and 
executes the plan. An agent can also learn about other agents to improve both their 
efficiency and accuracy. The following sections describe the knowledge representation, 
communication, query processing, and learning capabilities of the individual agents. 
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1.3    The Knowledge of an Agent 

Each agent contains a model of its domain of expertise and models of the other agents 
that can provide relevant information. We will refer to these two types of models as 
the domain model and information source models. These models constitute the general 
knowledge of an agent and are used to determine how to process an information request. 

The domain model is an ontology that represents the domain of interest of the agent 
and establishes the terminology for interacting with the agent. The information-source 
models describe both the contents of the information sources and their relationship to 
the domain model. These models do not need to contain a complete description of the 
other agents, but rather only those portions that are directly relevant. They constitute 
the resources that are available to an agent to answer information requests when they 
cannot be handled locally. 

Both the domain and information-source models are expressed in the Loom knowledge 
representation language [MacGregor, 1990]. Loom is an AI knowledge representation 
system of the KL-ONE family1 [Brachman and Schmölze, 1985]. Loom provides a lan- 
guage for representing hierarchies of classes and relations, as well as efficient mechanisms 
for classifying instances of classes and reasoning about descriptions of object classes. 

1.3.1    The Domain Model of an Agent 

Each information agent is specialized to a single application domain and provides access 
to the available information sources within that domain. The domain model is intended 
to be a description of the application domain from the point of view of users or other 
information agents that may need to obtain information about the application domain. 

The domain model of an agent defines its area of expertise and the terminology for 
communicating with it. That is, it provides an ontology to describe the application 
domain. This ontology consists of descriptions of the classes of objects in the domain, 
relationships between these classes (including subsumption), and other domain-specific 
information. These classes and relationships do not necessarily correspond directly to the 
objects described in any particular information source. The model provides a semantic 
description of the domain, which is used extensively for processing queries. 

The largest application domain that we have to date is a logistics planning domain, 
which involves information about the movement of personnel and materiel from one 
location to another using aircraft, ships, trucks, etc. Currently, we are building another 
network of agents for a trauma care domain. 

'These type of languages are also known as description logics, terminological logics or concept 
languages. 
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Figure 1.2 shows a fragment of the domain model of the Sea_Agent that belongs to 
the organization of Figure 1.1. The nodes represent concepts (i.e., classes of objects), 
the thick arrows represent subsumption (i.e., subclass relationships), and the thin arrows 
represent concept roles (i.e., relationships between classes). Some concepts that specify 
the range of roles have been left out of the figure for clarity. Some are simple types, such 
as strings or numbers (such as ship-name), while others are defined concepts (such as 

geoloc-code). 

Figure 1.2 
Fragment of the Domain Model of the Sea Agent 

1.3.2    Modeling other Agents 

An agent will have models of several other agents that provide useful information for its 
domain of expertise. Each information-source model has two main parts. First, there is 
the description of the contents of the information source. This comprises the concepts 
of interest available from that information source in terms of the ontology of that in- 
formation source. The terms in the ontology provide the language that the information 
source understands (and that will be used to communicate with it, as described in Sec- 
tions 1.4 and 1.5). Second, the relationship between these information source concepts 
and the concepts in the domain model needs to be stated. These mappings are used for 
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transforming a domain model query into a set of queries to the appropriate information 
sources. 

Figure 1.3 illustrates how an information source is modeled in Loom and how it is 
related to the domain model. All of the concepts and roles in the information-source 
model are mapped to concepts and roles in the domain model. A mapping link between 
two concepts or roles (dashed lines in the figure) indicates that they represent the same 
class of information. More precisely, that their extensions are equivalent. Thus, if the 
user (of the Sea Agent) requests all seaports, that information can be retrieved from 
the concept Harbor of the Harbor Jlgent. Note that the domain model may include 
relationships that involve concepts coming from different agents (like the role docked-at 
of the ship concept) but are not explicitly present in any one information source. 

range 

ship-name 

Sea Agent's 
Information source model of 

Naval Agent 

Sea Agent's 
Information source model of 

Harbor Agent 

Figure 1.3 
Relating an Information-Source Model to a Domain Model (in the Sea Agent) 
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1.4    Communication Language and Protocol 

We use a common language and protocol to communicate among agents (in order to avoid 
the n2 translation problem). Strictly speaking, there are two different aspects in agent 
communication. The content of the communication and the particular communicative 
act that is intended. This is reflected, respectively, in the choice of Loom as the language 
in which to describe the desired information requested by agents, and the Knowledge 
Query and Manipulation Language (KQML)[Finin et ai, 1992, Finin et al, in press] as 
the protocol to organize the dialogue among agents.2 

Queries to an information agent are expressed in a subset of the Loom query language. 
These queries are composed of terms of its domain model, so there is no need for other 
agents or a user to know or even be aware of the terms used in the underlying information 
sources. Given a query, an information agent identifies the appropriate information 
sources and issues queries to those sources to obtain the requisite data for answering the 
query. To do this, an information agent translates the domain-level query into a set of 
queries to more specialized information agents using the terms appropriate to each of 
those agents (by reasoning with the mappings introduced in Section 1.3.2). 

Figure 1.4 illustrates a query expressed in the Loom language. This query requests all 
seaports and the corresponding ships that can be accommodated within each port. The 
first argument to the retrieve expression is the parameter list, which specifies which 
parameters of the query to return (analogous to the projection operation in the relational 
algebra). The second argument is a description of the information to be retrieved. This 
description is expressed as a conjunction of concept and relation expressions, where the 
concepts describe the classes of information, and the relations describe the constraints 
on these classes. The first clause of the query is an example of a concept expression and 
specifies that the variable ?port describes a member of the class seaport. The second 
clause is an example of a relation expression and states that the relation port jiame 
holds between the values of ?port and ?port_name. More precisely, this query requests 
all seaport-name and ship-type pairs where the depth of the port exceeds the draft of 
the ship. 

In addition to sending queries to other agents, the agents also need the capability 
to send back information in response to their queries. We use an implementation of 
KQML to handle the interface protocols for transmitting queries, returning the appro- 
priate information, and building the appropriate internal structures. Messages among 
SIMS agents, and between SIMS agents and the LIM agents, which provide access to 
relational databases, are all uniformly expressed in KQML. Recall that in order to make 

2However, the use of KQML in our agent network is transparent to the user. 
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(retrieve (?port_name ?ship_type) 
(:and (seaport ?port) 

(portjiame ?port ?port_name) 
(charmeljof ?port ?channel) 
(channel-depth ?channel ?depth) 
(ship ?ship) 
(vehicle-type ?ship ?ship_type) 
(maxjdraft ?ship ?draft) 
(> ?depth ?draft))) 

Figure 1.4 
Example Loom Query 

an existing database or other application program available to the network of agents 
requires building a wrapper around the existing system. This wrapper should include 
the capability of handling the relevant KQML performatives and understand the expres- 
sions of the common content language, i.e., the Loom query language. Currently, the 
operations supported by SIMS are retrieve, update, insert, delete, and notify. 

To summarize, the communication among agents proceeds through the following phases. 
Once the example of Figure 1.4 has been translated into queries in terms of each infor- 
mation source, each subquery (in its Loom query language form) will be enclosed in 
a KQML message and transmitted to the appropriate information source. Then, the 
wrapper of the receiver will unpack it, translate the Loom expression into the language 
originally handled by that agent (for example, SQL in the case of a relational database), 
collect the results, and send them back as a KQML reply. Recall also that only one such 
wrapper would need to be built for any given type of information source, which reduces 
the complexity of the translation among heterogeneous systems from quadratic to linear 
in the number of different data description languages. 

1.5    Query Processing 

A critical capability of an information agent is the ability to flexibly and efficiently 
retrieve and process data. The query processing requires developing an ordered set of 
operations for obtaining the requested set of data. This includes selecting the information 
sources for the data, the operations for processing the data, the sites where the operations 
will be performed, and the order in which to perform them. Since data can be moved 
around between different sites, processed at different locations, and the operations can 
be performed in a variety of orders, the space of possible plans is quite large. 

We have developed a flexible planning system to generate and execute query access 
plans.   The planner is based on an implementation of UCPOP [Barrett et al., 1993]. 
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We augmented this planner with the capability for producing parallel execution plans 
[Knoblock, 1994], added the capability of interleaving planning and execution [Ambros- 
Ingerson and Steel, 1988, Etzioni et a/., 1994], and added support for run-time variables 
[Ambros-Ingerson and Steel, 1988, Etzioni et al., 1992] for gathering information at run 
time. This work extends previous work" on interleaving planning, execution, and sensing 
with the ability to perform these operations in parallel and applies these ideas to query 
processing. In the context of query processing, it allows the system to execute operations 
in parallel, augment and replan queries that fail while executing other queries, gather 
additional information to aid the query processing, and accept new queries while other 

queries are being executed. 
This section describes how this planner is used to provide flexible access to the available 

information sources. First, we describe how we cast a query as an information goal. 
Second, we describe how an agent dynamically selects an appropriate set of information 
sources to solve an information goal. Third, we present our approach to producing a 
flexible query access plan. Fourth, we describe how the interleaving of the planning and 
execution can be used to execute actions in parallel, employ sensing operations to gather 
additional information for planning, handle new information requests as they come in, 
and replan when actions fail. Finally, we describe how an agent optimizes queries using 
semantic knowledge about the contents of other information sources. 

1.5.1    An Information Goal 

A planning problem consists of a goal, an initial state, and a set of operators that can be 
applied to transform the initial state into the goal. In this subsection, we will describe 
the goal and initial state and in the following two subsections we present the operators 

used in the planning process. 
For information gathering, the goal of a problem consists of a description of a set of 

data as well as the location where that data is to be sent. For example, Figure 1.5 
illustrates a goal which specifies that the set of data be sent to the OUTPUT device of 
a sims agent. The data to be retrieved is defined by the query expressed in the Loom 
knowledge representation language, as described in Section 1.3. 

The initial state of a problem defines the information agents that are available as 
well as which server they are running on. The example shown in Figure 1.6 defines 
three available agents. Each clause defines the name of the agent and the machine it 
is running on. For example, the first clause defines the Naval-Agent, which is running 
on the machine isdl2.isi.edu. In addition, there is also the domain and information 
models, that are static (for the duration of the query processing) and are accessed directly 

from a Loom knowledge base. 
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(available output sims 
(retrieve (?portJiane ?ship_type) 

(:and (seaport ?port) 
(portjiame ?port ?portJtiame) 
(has-channel ?port ?channel) 
(channel.depth ?channel ?depth) 
(ship ?ship) 
(vehicle-type ?ship ?ship_type) 
(range ?ship   ?range) 
(> Trange 10000) 
(maxjdraft ?ship ?draft) 
(> ?depth ?draft)))) 

Figure 1.5 
Example Planner Goal 

((source-available Naval-Agent isdl2.isi.edu) 
(source-available Harbor-Agent isdl4.isi.edu) 
(source-available Port_Agent isdl4.isi.edu)) 

Figure 1.6 
Example Initial State 

1.5.2    Information Source Selection 

An information goal sent to an agent is expressed in terms of the domain model of 
that agent. Part of the planning for an information goal requires selecting an appro- 
priate set of information sources (other information agents or data repositories). To 
select the information sources, a set of reformulation operators are used to transform the 
domain-level terms into terms about information that can be retrieved directly from an 
information source [Arens et al., 1995]. If a query requests information about ports and 
there is a single information source that provides such information, then the mapping is 
straightforward. However, in some cases there may be several information sources that 
provide access to the same information and in other cases no single information source 
can provide the required information and it will need to be drawn from several different 
sources. 

Consider the fragment of the knowledge base shown in Figure 1.7, which covers the 
knowledge relevant to the example query in Figure 1.5. The concepts seaport, channel 
and ship have links to information source concepts, shown by the shaded circles, which 
correspond to information that can be retrieved from some information agent. Thus, 
the Harbor_Agent contains information about both seaports and channels, and the 
Port_Agent contains information about seaports. 

The system has a number of truth-preserving reformulation operations that can be 
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range  (   Vehicle    ) vehicle-type 

Figure 1.7 
Fragment of the Domain and Information-Source Models 

used for reformulating a domain-level query. The basic operations include: 

• Information Source Selection maps a domain-level concept directly to an information- 
source-level concept. In many cases this will simply be a direct mapping from a concept 
such as seaport to a concept that corresponds to the seaports in some information 
source. There may be several information sources that contain the same information, 
in which case the domain-level query can be reformulated in terms of any one of the 
information source concepts. In general, the choice is made so as to minimize the overall 
cost of executing the query. 

• Concept Generalization uses knowledge about the relationship between a concept and 
a superconcept to reformulate a query in terms of the more general concept. In order to 
preserve the semantics of the original request, one or more additional constraints may 
need to be added to the query in order to avoid retrieving extraneous data. For example, 
if a query requires some information about seaports, but the information sources that 
correspond to the seaport concept do not contain the requested information, then it 
may be possible to generalize seaport to port and retrieve the information from some 
information source that contains port information. In order to ensure that no extraneous 
data is returned, the reformulation will include a join between seaport and port. 
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• Concept Specialization replaces a concept with a more specific concept by checking 
the constraints on the query to see if there is an appropriate specialization of the re- 
quested concept that would satisfy it. For example, if a query requests all seaports 
with an elevation greater than 300 feet, it can be reformulated into a request for all 
inland-waterway seaports using knowledge in the model that only inland-waterway 
seaports have an elevation above 300 feet. 

• Definition Substitution replaces a relation defined between concepts in the domain 
model with equivalent terms that are available in the information-source models. For 
example, has.channel is a property of the domain model, but it is not defined in any 
information source. Instead, it can be replaced by joining over a key, geoloc-code, that 
occurs both in seaport and channel. 

For example, consider the query shown in Figure 1.5. There are two concept expres- 
sions - one about ships and the other about seaports. In the first step, the system 
attempts to translate the seaport expression into a information-source-level expression. 
Unfortunately, none of the information sources contain information that corresponds to 
has.channel. Thus, the system must reformulate has.channel, using the substitute 
definition operator. This expresses the fact that has.channel can be materialized by 
performing a join over the keys for the seaport and channel concepts. The resulting 
reformulation is shown in Figure 1.8. 

(retrieve (?portJiame ?ship_type) 
(:and (seaport ?port) 

(port-name ?port ?port_name) 
(geoloccode ?port ?geocode) 
(channel ?channel) 
(geoloccode ?channel ?geocode) 
(channel-depth ?channel ?depth) 
(ship ?ship) 
(vehicle.type ?ship ?ship_type) 
(range ?ship ?range) 
(> ?range 10000) 
(max_draft ?ship ?draft) 
(> ?depth ?draft))) 

Figure 1.8 
Result of Applying the Definition Substitution Operator to Eliminate has-channel 

Another step in the reformulation process is to select information sources for the in- 
formation requested in the query. This can be done using the select-information-source 
operator, which selects among the available information sources. Figure 1.9 shows a 
reformulation of a query for information about seaports, which could be provided by 
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either the HarborJtgent or Port_Agent. In this case Harbor Jlgent is selected because 

the information on channels is only available in the Harbor Jlgent. 

Domain-Level Query: 
(retrieve (TportJiame ?depth) 

(:and (seaport ?port) 
(port-name ?port ?portjiame) 
(geoloccode ?port ?geocode) 
(channel ?channel) 
(geoloccode ?channel ?geocode) 
(channel .depth ?channel ?depth))) 

Source-Level Query: 
(retrieve (?port_name ?depth) 

(:and (harbor.agent.harbor ?port) 
(harbor.agent.port_nm ?port ?portjname) 
(harbor-agent.glcjcd ?port ?glc_cd) 
(harbor-agent. channel ?channel) 
(harbor-agent. glccd ?channel ?glc^cd) 
(harbor.agent. ch-depthJt ?channel ?depth) 

Figure 1.9 
Result of Selecting Information Sources for Channels and Seaports 

1.5.3    Generating a Query Access Plan 

In addition to selecting the appropriate information sources to solve an information 

goal, the planner must also determine the appropriate data manipulation and ordering 

of those operators to generate the requested data. Therefore, besides the operators for 

source selection, there are five operators for manipulating the data: 

• Move - Moves a set of data from one information agent to another. 

• Join - Combines two sets of data using the given join operation. 

• Retrieve - Specifies the data to be retrieved from a particular information source. 

• Select - Selects a subset of the data using the given constraints. 

• Compute - Constructs a new term in the data from some combination of the existing 

data. 

Each of these operations manipulates one or more sets of data, where the data is specified 

in the same terms that are used for specifying the original query. 

Consider the operator shown in Figure 1.10 that defines a join performed locally. This 

operator is used to achieve the goal of making some information available in the local 
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knowledge base of a SIMS agent. It does this by partitioning the request into two subsets 
of the requested data, getting that information into the local knowledge base of an agent 
and then joining that data together to produce the requested set of data. The operator 
states that (1) if a query can be broken down into two subqueries that can be joined 
together over some join operator, and (2) the first set of data can be made available 
locally, and (3) the second set of data can also be made available locally, then the 
requested information can be made available. The predicate join-partition is defined 
by a program that produces the possible join partitions of the requested data. 

(define (operator join) 
:parameters (?join-ops ?data ?data-a ?data-b) 
precondition (:and (join-partition ?data ?join-ops 

?data-a ?data-b) 
(available local sims ?data-a) 
(available local sims ?data-b)) 

:effect  (:and (available local sims ?data)}) 

Figure 1.10 
The Join Operator 

To search the space of query access plans efficiently, the system uses a simple estimation 
function to calculate the expected cost of the various operations. Using this evaluation 
function in a branch-and-bound search, the system will produce a plan that has the lowest 
overall parallel execution cost. In the example, the planner leaves the join between the 
harbor and channel to be performed by the Harbor_Agent since this will be cheaper 
than moving the information into the local knowledge base of an agent and joining it 
together. 

The plan generated for the example query in Figure 1.5 is shown in Figure 1.11. This 
plan includes the source selection operations as well as the data manipulation operations 
since these operations are interleaved in the planning process. In this example, the system 
partitions the given query such that the ship information is retrieved in a single query to 
the Naval_Agent and the seaport and channel information is retrieved in a single query 
to the Harbor Jlgent. All of the information is brought into the local knowledge base of 
the agent originating the query, where the draft of the ships can be compared against 
the depth of the seaports. Once the final set of data has been generated, it is returned 
to the agent or application that requested the information. 

1.5.4    Interleaving Planning sind Execution 

The previous two sections described the operators for both selecting an appropriate set 
of information sources and for manipulating the data retrieved from those information 
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(retrieve harbor_agent 
(?port_name ?depth) 
(and (harbor ?port) 

(port_nm ?port ?port_name) 
(glc_cd ?port ?glc_cd) 
(channel ?channel) 
(glc cd ?channel ?glc_cd) 
(ch_depth ft ?channel ?depth))) 

(select 
harbor_agent 
isd12.isi.edu) 

(move 
harbor_agent 
local) 

(retrieve-data naval_agent 
(?ship_type ?draft) 
(and (ship ?ship) 

(sht_nm vship ?ship_type) 
(range ?ship ?range) 
(>?range 10000) 
(max_drafl ?ship ?draft))) 

Figure 1.11 
Parallel Query Access Plan 

(join 
(< ?draft ?depth)) (subst-defn 

has-channel) 

(select 
naval_agent 
isd14.isi.edu) 

(move 
naval_agent 
local) 

sources. This section describes how this planning is tightly integrated with the execution 
to provide the ability to flexibly and efficiently process queries [Knoblock, 1995]. 

The interleaving of the planning and execution provides a number of important capa- 
bilities for the agents: 

An agent can run continuously, accepting queries and planning for them while it is 
executing other queries. 

If a failure occurs, an agent can replan the failed portion of the plan while it continues to 
execute queries that are already in progress. After replanning, the system will redirect 
the failed subquery to a different agent or information repository. 

An agent can issue sensing actions to gather additional information for query processing. 
This allows an agent to gather additional information to formulate more efficient queries 
to other information sources. Information gathering can also help to select among a 
number of potentially relevant information sources [Knoblock and Levy, 1994]. 

Rather than having a separate execution module, the execution is tightly integrated 
in the planner. This is done by treating the execution of each individual action as a 
necessary step in completing a plan. Thus, the goal of the planner becomes producing 
a complete and executed plan rather than just producing a complete plan. This allows 
the planner to interleave the planning process with the execution, which makes it pos- 
sible to handle new goals, replan failed goals, and execute actions to gather additional 
information. 

The execution of an action is viewed as a commitment to the plan in which the action 
occurs. This means that the planner will only consider the plan from which the action is 
executed and all valid refinements of that plan. Since execution of an action commits to 
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the corresponding plan, we would like the planner to be selective in choosing to execute 
an action. This is achieved by delaying the execution of any action as long as possible. 
The idea is that the planner should find the best complete plan within some time limit 
before any action is executed. Then once execution has begun, it would resolve any failed 
subplans or new goals before executing the next action. 

Execution of an action may take considerable time, so the planner does not execute 
an action and wait for the results. Instead the system spawns a new process to execute 
the action and then that process notifies the planner once it has completed. At any one 
time there may be a number of actions that are all executing simultaneously. 

On each cycle of the planner, the system will check if any executing actions have 
completed. Once an action is completed then the executing action is removed from the 
agenda. If it completes successfully then the action is left in the plan and marked as 
completed. Other actions that depend on this action may now be executable if all of 
their other dependencies have also been executed. If an action fails, the system produces 
a refinement of the executing plan that eliminates the failed portion of the plan. This 
replanning can be performed while other actions are still executing. 

If a new goal is sent to the planner, the system simply inserts an open condition for 
that new top-level goal. The additional open condition will be handled before initiating 
execution of any new operators, so the planner will augment the existing plan to solve 
this new goal in the context of the existing executing plan. 

The planner also supports run-time variables [Ambros-Ingerson and Steel, 1988, Etzioni 
et al., 1992], which allow the planner to perform sensing operations in the course of 
planning. These variables appear in the effects of operators and essentially serve as place 
holders for the value returned by the operator when it is actually executed. Run-time 
variables are useful because the result can be incorporated and used in other parts of the 
plan. 

1.5.5    Semantic Query Optimization 

Before executing any actions in the query plan, the system first performs semantic query 
optimization to minimize the overall execution cost [Hsu and Knoblock, 1993]. The 
semantic query optimizer uses semantic knowledge about the information sources to 
reformulate the query plan into a cheaper, but semantically equivalent query plan. The 
semantic knowledge is learned by the system as a set of rules (Section 1.6.2). 

Consider the example shown in Figure 1.12. The input query retrieves ship types 
whose ranges are greater than 10,000 miles. This query could be expensive to evaluate 
because there is no index placed on the range attribute. The system must scan all of 
the instances of ship and check the values of the range to retrieve the answer. 

An example semantic rule is shown in Figure 1.13. This rule states that all ships with 
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(retrieve (?ship-type ?draft) 
(:and (naval-agent. ship ?ship) 

(naval-agent .sht_nm ?ship ?ship-type) 
(naval-agent, max jdraft ?ship ?draft) 
(naval-agent. range ?ship ?range) 
(> ?range 10000))) 

Figure 1.12 
Example Subquery 

range greater than 10,000 miles have a draft greater than 12 feet. Based on these rules, 
the semantic query optimizer infers a set of additional constraints and merges them with 
the input query. The final set of constraints left in the reformulated query is selected 
based on two criteria: reducing the total evaluation cost, and retaining the semantic 
equivalence. A detailed description of the algorithm is in [Hsu and Knoblock, 1993]. In 
this example, the input query is reformulated into a new query where the constraint on 
the attribute range is replaced with a constraint on the attribute max_draf t, which turns 
out to be cheap to access because of the way the information is indexed. The reformulated 
query can therefore be evaluated more efficiently. The system can reformulate a query by 
adding, modifying or removing constraints. The resulting query is shown in Figure 1.14. 

(:if (:and (naval-agent. ship ?ship) 
(naval-agent.range ?ship ?range) 
(naval-agent. fuel-cap ?ship ?fuel_cap) 
(> ?range 10000)) 

(:then (> ?draft 12))) 

Figure 1.13 
An Example Semantic Rule 

(retrieve (?sht-type ?draft) 
(:and (naval_agent. ship ?ship) 

(naval-agent. shtjun ?ship ?ship-type) 
(naval-agent.max-draft ?ship ?draft) 
(> ?draft  12))) 

Figure 1.14 
Reformulated Query 

We can reformulate each subquery in the query plan with the subquery optimization 
algorithm and improve their efficiency. However, the most expensive aspect of queries 
to multiple information sources is often processing and transmitting intermediate data. 
In the example query plan in Figure 1.11, the constraint on the final subqueries involves 
the variables ?draft and ?depth that are bound in the preceding subqueries.   If we 
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can reformulate these preceding subqueries so that they retrieve only the data instances 
possibly satisfying the constraint (< ?draft ?depth) in the final subquery, the inter- 
mediate data will be reduced. This requires the query plan optimization algorithm to 
be able to propagate the constraints along the data flow paths in the query plan. We 
developed a query plan optimization algorithm which achieves this by using the semantic 
rules to derive possible constraints and propagating these constraints around the query 
plan. 

Consider an example of reformulating the query plan shown in Figure 1.11. The 
system is given the fact 41 < ?depth < 60. The subquery optimization algorithm can 
infer from the constraint (< ?draft ?depth) a new constraint (< ?draft 60) and then 
propagate this.constraint to constrain the maximum draft. The algorithm will insert the 
new constraint on ?draf t in that subquery. 

The resulting query plan is more efficient and returns the same answer as the original 
one. The amount of intermediate data is reduced because of the new constraint on the 
attribute ?draft. The entire algorithm for query plan optimization is polynomial. Our 
experiments show that the overhead of this algorithm is very small compared to the 
overall query processing cost. On a set of 26 example queries, the query optimization 
yielded significant performance improvements with an overall reduction in execution time 
of 59.84% [Hsu and Knoblock, 1995]. 

1.6    Learning 

An intelligent agent for information gathering should be able to improve both its accuracy 
and performance over time. To achieve these goals, the information agents currently 
support three forms of learning. First, they have the capability to cache frequently 
retrieved or difficult to retrieve information. Second, for those cases where caching is 
not appropriate, an agent can learn about the contents of the information sources in 
order to minimize the costs of retrieval. Finally, an information agent can analyze the 
contents of its information sources in order to refine its domain model to better reflect 
the currently available information. All these forms of learning can improve the efficiency 
of the system, and the last one can also improve its accuracy. 

1.6.1    Caching Retrieved Data 

Data that is required frequently or is very expensive to retrieve can be cached in the local 
agent and then retrieved more efficiently [Arens and Knoblock, 1994]. An elegant feature 
of using Loom to model the domain is that cached information can easily be represented 
and stored in Loom. The data is currently brought into the local agent for processing, 
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so caching is simply a matter of retaining the data and recording what data has been 

retrieved. 
To cache retrieved data into the local agent requires formulating a description of the 

data so it can be used to answer future queries. This can be extracted from the initial 
query, which is already expressed in the form of a domain-level description of the desired 
data. The description defines a new subconcept and it is placed in the appropriate place 
in the concept hierarchy. The data then become instances of this concept and can be 
accessed by retrieving all the instances of it. 

Once the system has defined a new class and stored the data under this class, the cached 
information becomes a new information source concept for the agent. The reformulation 
operations, which map a domain query into a set of information source queries, will 
automatically consider this new information source. Since the system takes the retrieval 
costs into account in selecting the information sources, it will naturally gravitate towards 
using cached information where appropriate. In those cases where the cached data does 
not capture all of the required information, it may still be cheaper to retrieve everything 
from the remote site. However, in those cases where the cached information can be 
used to avoid an external query, the use of the stored information can provide significant 

efficiency gains. 
The use of caching raises a number of important questions, such as which information 

should be cached and how the cached information is kept up-to-date. We are explor- 
ing caching schemes where, rather than caching the answer to a specific query, general 
classes of frequently used information are stored. This is especially useful in the Internet 
environment where a single query can be very expensive and the same set of data is often 
used to answer multiple queries. To avoid problems of information becoming out of date, 
we have focused on caching relatively static information. 

1.6.2     Learning rules for Semantic Query Optimization 

The goal of an information agent is to provide efficient access to a set of information 
sources. Since accessing and processing information can be very costly, the system strives 
for the best performance that can be provided with the resources available. This means 
that when it is not processing queries, it gathers information to aid in future retrieval 
requests [Hsu and Knoblock, 1994, Hsu and Knoblock, 1995]. 

The learning is triggered when an agent detects an expensive query. In this way, 
the agent will incrementally gather a set of rules to reformulate expensive queries. The 
learning subsystem uses induction on the contents of the information sources to construct 
a less expensive specification of the original query. This new query is then compared with 
the original to generate a set of rules that describe the relationships between the two 
equivalent queries. The learned rules are integrated into the agent's domain model and 
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then used for semantic query optimization. These learned rules form an abstract model 
of the information provided by other agents or data repositories. 

1.6.3    Reconciling Agent Models 

So far we have assumed that the domain and information-source models of an agent are 
perfectly aligned. That is, the mappings among concepts in these models perfectly cor- 
respond to the actual information. In a network of autonomous agents this assumption 
will not hold in general. First, the designer of the models might not have had a complete 
understanding of the semantics of the information provided by each agent. Second, even 
if at design time the models were accurate, the autonomy of the agents will cause some 
concepts to drift from their original meaning. The dynamic nature of the information 
implies that we need to provide mechanisms to detect inconsistency and/or incomplete- 
ness in the agent's knowledge. In this section we describe an approach to automatically 
reconcile agent models, which will improve both the accuracy of the represented knowl- 
edge and the efficiency of the information gathering. It consists of three phases. First, 
an agent checks for misalignments between the domain and source models. Second, it 
modifies the domain model to represent the new classes of information detected. Third, 
if possible, it learns from the actual data a description that declaratively describes these 
new concepts. 

We will illustrate the main ideas of this approach through an example from the do- 
main of the Sea_Agent (Figure 1.7). Assume that initially both Harbor .Agent. Harbor 
and Port -Agent. Port contain the same information about major commercial seaports, 
which for the purposes of the application is in agreement with the intended semantics 
of the concept Seaport. However, the Port_Agent evolves to contain information about 
recreational, small fishing harbors, etc. The Harbor_Agent and Port_Agent are no longer 
equivalent providers of Seaport information. 

First, analyzing their actual extensions, our agent will notice that Harbor .Agent. Harbor 
is now a subset of Port .Agent. Port. Second, the domain model is automatically mod- 
ified as shown in Figure 1.15. A new concept Commercial-Seaport is added to the do- 
main model as a subconcept of the original seaport. Harbor .Agent. Harbour will map 
now into Commercial-Seaport. Third, we apply machine learning algorithms (currently 
ID3 [Quinlan, 1986]) in order to obtain a concise description of this new concept. For 
example, it might construct a description that distinguishes commercial seaports from 
generic seaports by the number of cranes available. With this refined model, a query 
like "retrieve all the seaports that have more than 15 cranes and channels more than 70 
feet deep", which describes information only satisfied by commercial seaports, could be 
appropriately directed to the Harbor .Agent, saving both in communication (less data 
transmitted) and processing costs (less data considered in any subsequent join), because 
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the concept Haxbor has a smaller number of instances. Moreover, a query about a small- 
craft harbor will not be incorrectly directed to the Harbor-Agent, but to the Port-Agent 
which is the only one that can provide such information. 

port-name 

Figure 1.15 
Reconciled Model 

A more detailed explanation of these techniques can be found in [Ambite and Knoblock, 
1994], including other cases in which the extensions are overlapping or disjoint, or deal 
with more than two information source concepts. 

The benefits of the reconciliation are twofold. First, increased accuracy of the knowl- 
edge represented in the system. These new concepts provide a more precise picture of the 
current information available to an agent system. This mechanism adapts automatically 
to the evolution of the information sources, whose contents may semantically drift from 
the original domain model mappings. Also, human designers may revise these concepts 
to both refine the domain model and detect errors. Second, increased efficiency of query 
processing. A SIMS agent will use those concepts that yield a cheaper query plan. These 
new concepts provide better options for retrieving the desired data. 
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1.7    Related Work 

A great deal of work has been done on building agents for various kinds of tasks. This 
work is quite diverse and has focused on a variety of issues. First, there has been 
work on multi-agent planning and distributed problem solving, (see [Bond and Gasser, 
1988]). The body of this work deals with the issues of coordination, synchronization, 
and control of multiple autonomous agents. Second, a large body of work has focused 
on defining models of beliefs, intentions, capabilities, needs, etc., of an agent. [Shoham, 
1993] provides a nice example of this work and a brief overview of the related work on 
this topic. Third, there is more closely related work on developing agents for information 
gathering. 

The problem of information gathering is also quite broad and the related work has 
focused on various issues. Kahn and Cerf [Kahn and Cerf, 1988] proposed an architecture 
for a set of information-management agents, called Knowbots. The various agents are 
hard-coded to perform particular tasks. Etzioni et al. [Etzioni et ah, 1992, Etzioni et 
ah, 1994] have built agents for the Unix domain that can perform a variety of Unix 
tasks. This work has focused extensively on reasoning and planning with incomplete 
information, which arises in many of these tasks. In contrast to this work, the focus of our 
work is on flexible and efficient retrieval of information from heterogeneous information 
sources. Since these systems have in-memory databases, they assume that the cost of a 
database retrieval is small or negligible. One of the critical problems when dealing with 
large databases is how to issue the appropriate queries to efficiently access the desired 
information. We are focusing on the problems of how to organize, manipulate, and learn 
about large quantities of data. 

Research in databases has also focused on building integrated or federated systems that 
combine information sources [Landers and Rosenberg, 1982, Sheth and Larson, 1990]. 
The approach taken in these systems is to first define a global schema, which integrates 
the information available in the different information sources. However, this approach is 
unlikely to scale to the large number of evolving information sources (e.g., the Internet) 
since building an integrated schema is labor intensive and difficult to maintain, modify, 
and extend. 

The Carnot project [Collet et ah, 1991] also integrates heterogeneous databases using 
a knowledge representation system. Carnot uses a knowledge base to build a set of 
articulation axioms that describe how to map between SQL queries and domain concepts. 
After the axioms are built the domain model is no longer used or needed. In contrast, the 
domain model of one of our agents is an integral part of the system, and allows an agent 
to both combine information stored in the knowledge base and to reformulate queries. 

Levy el al.   [Levy et ah, 1994] are also working on building agents for information 
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gathering. The focus of their work has been on developing a framework for selecting a 
minimal set of sites to answer a query. In contrast, SIMS integrates the site selection 
process in the query planning process in order to provide greater flexibility. This inte- 
gration allows SIMS generate a query plan and a corresponding set of sources that will 
produce the requested information most efficiently. 

1.8    Discussion 

This paper described the SIMS architecture for intelligent information agents. This 
particular architecture has a number of important features: (1) modularity in terms of 
representing an information agent and information sources, (2) extensibility in terms 
of adding new information agents and information sources, (3) flexibility in terms of 
selecting the most appropriate information sources to answer a query, (4) efficiency in 
terms of minimizing the overall execution time for a given query, and (5) adaptability 
in terms of being able to track semantic discrepancies among models of different agents. 
We will discuss each of these features in turn. 

First, the uniform query language and separate models provide a modular architecture 
for multiple information agents. An information agent for one domain can serve as an 
information source to other information agents. This is can done seamlessly since the 
interface to every information source is exactly the same - it takes a query in a uniform 
language (i.e., Loom) as input and returns the data requested by the query. The domain 
model provides a uniform language for queries about information in any of the sources 
to which an agent has access. The contents of each agent is represented as a separate 
information source and is mapped to the domain model of an agent. Each information 
agent can export some or all of its domain model, which can be incorporated into another 
information agent's model. This exported model forms the shared terminology between 
agents. 

Second, the separate domain and information-source models and the dynamic infor- 
mation source selection make the overall architecture easily extensible. Adding a new 
information source simply requires building a model of the information source that de- 
scribes the contents of the information source as well as how it relates to the domain 
model. It does not require integrating the new information-source model with the other 
information-source models since the mapping between domain and information-source 
models is not fixed. Similarly, changes to the contents of information sources require 
only changing the model of the specific information source. Since the selection of the 
information sources is performed dynamically, when an information request is received, 
the agent will select the most appropriate information source that is currently available. 
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Third, the separate domain and information-source models and the dynamic informa- 
tion source selection also make the agents very flexible. The agents can choose the 
appropriate information sources based on what they contain, how quickly they can an- 
swer a given query, and what resources are currently available. If a particular information 
source or network goes down or if the data is available elsewhere, the system will retrieve 
the data from sources that are currently available. An agent can take into consideration 
the rest of the processing of a query, so that the system can take advantage of those cases 
where retrieving the data from one source is much cheaper than another source because 
the remote system can do more of the processing. This flexibility also makes it possible 
to cache and reuse information without extra work or overhead. 

Fourth, building parallel query access plans, using semantic knowledge to optimize 
the plans, caching retrieved data, and learning about information sources provide ef- 
ficient access to large numbers of information sources. The planner generates plans 
that minimize the overall execution time by maximizing the parallelism in the plan to 
take advantage of the fact that separate information sources can be accessed in parallel. 
The semantic query optimization provides a global optimization step that minimizes the 
amount of intermediate data that must be processed. The ability to cache retrieved data 
allows an agent to store frequently used or expensive-to-retrieve information in order to 
provide the requested information more efficiently. And the ability to learn about the 
contents of the information sources allows the agent to exploit time when it would not 
otherwise be used to improve its performance on future queries. 

Fifth, the ability to compare and reconcile models of different agents make the agents 
adaptable to changes in the information sources. Using the detailed semantic models 
of the information sources, an agent can track changes in the information sources and 
update its own models appropriately. This information is critical for both the accuracy 
and efficiency of the query processing. 

To date, we have built information agents that plan and learn in the logistics planning 
domain. These agents contain a detailed model of this domain and extract informa- 
tion from a set of relational databases. The agents generate query access plans to the 
appropriate information sources, execute the queries in parallel, and learn about the 
information sources. Future work will focus on extending the planning and learning 
capabilities of these agents. 
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